OpenAI Agents SDK
OpenAI Agents SDK是OpenAI官方推出的轻量级Agent开发框架,旨在方便开发者构建多Agent协作的智能体系统。该SDK源于OpenAI内部实验项目Swarm,并在近期正式推出生产版本。OpenAI Agents SDK的特点是:简单易用、轻量级、专注在最小集功能,并支持转交(Handoffs)、护栏(Guardrails)等很有特点的功能。
LangGraph
LangGraph来自著名的LangChain,是一个用于构建Agentic Workflow的强大框架,它将任务过程建模为有状态的Graph结构,从而可以实现更复杂和结构化的交互。在该框架内集成MCP Server可以在工作流程的各个阶段更精确地控制何时以及如何调用外部工具,从而实现复杂的Agentic系统。LangGraph的特点是功能强大,你可以使用Prebuilt的接口快速创建Agent,也可以使用Graph定义复杂的Agentic工作流与多Agent系统;缺点是略显复杂。
LlamaIndex
LlamaIndex最初是一个专注于构建基于外部数据的LLM应用程序的框架,其独特之处在于构建以数据为中心的LLM应用的能力,特别是复杂的企业级RAG应用。但随着LlamaIndex Workflows与AgentWorkflow功能的推出,LlamaIndex也发展为一个更全能的专注于企业级RAG+Agent系统的开发框架。特点是功能强大、预置大量RAG应用优化模块;事件驱动的Workflows在Agent开发上比LangGraph更简单。
AutoGen 0.4+
AutoGen是微软开发的一个框架,用于构建具有多Agent对话的下一代企业级AI应用。其独特之处在于专注于通过多个Agent之间的协调交互来实现协作和解决复杂任务,在最新的AutoGen0.4中,微软进行了颠覆性的架构修改,特别是开放了AutoGen-Core这一更底层的API层,可用于构建更底层与细粒度控制的分布式多Agent系统。其特点是功能强大,支持分布式多Agent,可根据需要选择不同层次的API使用;缺点是较复杂。
Pydantic AI
Pydantic AI来自于著名的Pydantic库开发者,是一个将Pydantic与LLM集成的Agents开发框架。其独特之处在于专注于在AI应用中利用Pydantic的类型验证、序列化与结构化输出等功能。Pydantic AI的特点是天然的结构化输出与强类型验证,且简洁易用,与其他框架也有良好的集成,可以结合使用。
SmolAgents
Smloagents是大名鼎鼎的Hugging Face开发的一个轻量级Agent开发框架。其特点在于简洁易用、基于生成代码的工具调用(核心抽象叫CodeAgent)以及与Hugging Face生态系统的集成。Smloagents与MCP的集成提供了一种直接的方式,可以为Agent添加复杂的功能,而无需为每个工具进行自定义编码。
Camel
Camel是一个专注于创建能够进行复杂对话以解决任务的强大的多智能体构建框架 。其独特之处在于使用AI Agent之间的角色扮演和交互协作来完成任务,并内置了多种角色的Agent抽象及大量组件,Camel也可以用来开发RAG应用。现在这些Agent也可以通过MCP Server得到增强。
CrewAI
CrewAI是一个用于编排自主AI智能体像团队一样协作完成复杂任务的多智能系统开发框架。其独特之处在于其“角色扮演”的设计,专注于创建具有特定角色和职责的结构化Agent团队(称为Crew),最新的Flow功能可用于创建更可靠的Agentic Workflow。